Abstract

In recent years, foodborne diseases caused by Escherichia coli are a major threat to the food industry and consumers. Antimicrobial peptides (AMPs) and ultrasound both have good inhibitory effects on E. coli. In this work, the mechanism of action and synergistic effect of an in silico predicted AMP, designated as TGH2 (AEFLREKLGDKCTDRHV), from the C-terminal sequence of Tegillarca granosa hemoglobin, combined with low-intensity ultrasound was explored. The minimal inhibitory concentration (MIC) of TGH2 on E. coli decreased by 4-fold to 31.25 μg/mL under 0.3 W/cm2 ultrasound treatment, while the time kill curve analysis showed that low-intensity ultrasound combined with peptide TGH2 had an enhanced synergistic bactericidal effect after 0.5 h. The permeability on E. coli cell membrane increased progressively during combined treatment with peptide TGH2 and low-intensity ultrasound, resulting in the leakage of intracellular solutes, as shown by transmission electron microscopy (TEM). Structural analysis using circular dichroism (CD) revealed that peptide TGH2 has an α-helical structure, showing a slight untwisting effect under 0.3 W/cm2 ultrasound treatment for 0.5 h. The findings here provide new insight into the potential application of ultrasound and AMPs combination in food preservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.