Abstract

This article investigates a closed-loop torque-controlled variable stiffness actuator (VSA) combined with a disturbance observer for enhancing low output impedance. We implement the generalized extended state observer (GESO) for conveniently testing the stability of the time-varying VSA system. In our application, the GESO is also required to serve the operation of the low- and high-impedance task. Here, the most important aspect is to consider the influence of the physical stiffness on the output impedance, because the VSA has been regulated with the closed-loop torque control. Through the interaction-torque experiments, we verify that using the fast dynamics GESO with the low-stiffness actuator can achieve low output impedance and stable interaction under the reachable frequency of a human. These properties contribute to perform the low-impedance task. When performing the high-impedance task, where a large torque command is needed, the high-stiffness actuator and the slow dynamics GESO are implemented to achieve high bandwidth and proper tracking performance. The continuously variable observer responses in accordance with the stiffness values are achieved via the gain-scheduling control. Moreover, the present closed-loop linear parameter varying system can be verified to be quadratically stable. The VSA system is then implemented on a knee exoskeleton for a sit-to-stand application. The reference command of the exoskeleton is a joint torque, calculated from the inverse dynamics. This torque signal is also used as the reference command of the stiffness motor of the VSA. The effectiveness of the exoskeleton system is experimentally verified with one healthy volunteer. Subsequently, another two healthy volunteers also successfully experienced the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.