Abstract

A variable stiffness actuator (VSA) is an inherently parameter-dependent system due to the controllable stiffness element. Within the torque-controlled framework, the VSA is distinguished from the classical series elastic actuator (SEA). A frozen torque controller can directly determine the SEA performance with a fixed-stiffness spring selection. However, since the VSA operates at a set of operating points, the aim is to achieve an adaptive control approach. For this, we propose a gain-scheduled torque controller. The control performance is expected to recover robustness when stiffness values are varied from smaller to larger ones. Simultaneously the bandwidth is maximized, taking into account hardware limitations. In this way, a good tradeoff between stability and performance can be achieved. A key step in the gain-scheduled controller design is to implement the linear controllers, where the linear quadratic Gaussian (LQG) technique was applied to deal with the multiloop feedback (a cascade control scheme) in the VSA plant. A lever-arm based VSA [i.e., a mechanical-rotary variable impedance actuator (MeRIA)] was used to verify this new controller design approach by the simulations and experiments. The resulting gain-scheduled controller was also evaluated by taking into account the impedance control testing on a motion-supported platform for the knee joint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.