Abstract

Low-illumination image restoration has been widely used in many fields. Aiming at the problem of low resolution and noise amplification in low light environment, this paper applies style transfer of CycleGAN(Cycle-Consistent Generative Adversarial Networks) to low illumination image enhancement. In the design network structure, different convolution kernels are used to extract the features from three paths, and the deep residual shrinkage network is designed to suppress the noise after convolution. The color deviation of the image can be resolved by the identity loss of CycleGAN. In the discriminator, different convolution kernels are used to extract image features from two paths. Compared with the training and testing results of Deep-Retinex network, GLAD network, KinD and other network methods on LOL-dataset and Brightening dataset, CycleGAN based on multi-scale depth residuals contraction proposed in this experiment on LOL-dataset results image quality evaluation indicators PSNR = 24.62, NIQE = 4.9856, SSIM = 0.8628, PSNR = 27.85, NIQE = 4.7652, SSIM = 0.8753. From the visual effect and objective index, it is proved that CycleGAN based on multi-scale depth residual shrinkage has excellent performance in low illumination enhancement, detail recovery and denoising.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.