Abstract
As a critical preprocessing technique, low-illumination image enhancement has a wide range of practical applications. It aims to improve the visual perception of a given image captured without sufficient illumination. Conventional low-illumination image enhancement methods are typically implemented by improving image brightness, enhancing image contrast, and suppressing image noise simultaneously. Nevertheless, recent advances in this area are dominated by deep-learning-based solutions, and consequently, various deep neural networks have been proposed and applied to this field. Therefore, this paper briefly reviews the latest low-illumination image enhancement, ranging from its related algorithms to its unsolved open issues. Specifically, current low-illumination image enhancement methods based on deep learning are first sorted out and divided into four categories: supervised learning methods, unsupervised learning methods, semi-supervised learning methods, and zero-shot learning methods. Then, existing low-light image datasets are summarized and analyzed. In addition, various quality assessment indices for low-light image enhancement are introduced in detail. We also compare 14 representative algorithms in terms of both objective evaluation and subjective evaluation. Finally, the future development trend of low-illumination image enhancement and its open issues are summarized and prospected.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have