Abstract

Low-hysteresis merits can help polymeric gel materials survive from consecutive loading cycles and promote life span in many burgeoning areas. However, it is a big challenge to design low-hysteresis and tough polymeric gel materials, especially for ionogels. This can be attributed to the fact that higher viscosities of ionic liquids (ILs) would increase chain friction of polymeric gels and eventually dissipate large amounts of energy under deformation. Herein, a chemical design of ionogels is proposed to achieve low-hysteresis characteristics in both mechanical and electric aspects via hierarchical aggregates formed by supramolecular self-assembly of quadruple H-bonds in a soft IL-rich polymeric matrix. These self-assembled nanoaggregates not only can greatly reinforce the polymeric matrix and enhance resilience, but also exhibit low-energy-dissipating features under stress conditions, simultaneously benefiting for low-hysteresis properties. These aggregates can also promote toughness and subsequent anti-fatigue properties in response to external cyclic mechanical stimuli. More importantly, these ionogels are presented as a model system to elucidate the underlying mechanism of the low hysteresis and fatigue resistance. Based on these findings, it is further demonstrated that the supramolecular low-hysteresis strategy is universal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.