Abstract

High energy consumption has seriously hindered the development of Fenton-like reactions for the removal of refractory organic pollutants in water. To solve this problem, we designed a novel Fenton-like catalyst (Cu-PAN3) by coprecipitation and carbon thermal reduction. The catalyst exhibits excellent Fenton-like catalytic activity and stability for the degradation of various pollutants with low H2O2 consumption. The experimental results indicate that the dual reaction centers (DRCs) are composed of Cu-N-C and Cu-O-C bridges between copper and graphene-like carbon, which form electron-poor/rich centers on the catalyst surface. H2O2 is mainly reduced at electron-rich Cu centers to free radicals for pollutant degradation. Meanwhile, pollutants can be oxidized by donating electrons to the electron-poor C centers of the catalyst, which inhibits the ineffective decomposition of H2O2 at the electron-poor centers. This therefore significantly reduces the consumption of H2O2 and reduces energy consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call