Abstract

Introduction: Rydberg atoms are ideal for measuring electric fields due to their unique physical properties. However, low-frequency electric fields below MHz can be challenging due to the accumulation of ionized free electrons on the atomic vapor cell’s surface, acting as a shield.Method: This paper proposes a Cavity-enhanced three-photon system (CETPS) measurement scheme, which uses a long-wavelength laser to excite the Rydberg state, reducing atomic ionization and enhancing detection spectrum resolution. A theoretical model is proposed to explain the quantum coherence effect of the light field, measured electric field, and the atomic system.Result: The results show that the proposed scheme significantly increases the electromagnetically induced transparency (EIT) spectral peak and narrows the spectral width, resulting in the maximum slope increasing by more than an order of magnitude.Discussion: The paper also discusses the impact of the Rabi frequency of the two laser fields and the coupling coefficient of the optical cavity on the transmission spectrum amplitude and linewidth, along with the optimal configuration of these parameters in the CEPTS scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.