Abstract

We demonstrate the measurement of super low-frequency electric field using Rydberg atoms in an atomic vapor cell with inside parallel electrodes, thus overcoming the low-frequency electric-field-screening effect at frequencies below a few kHz. Rydberg electromagnetically induced transparency (EIT) spectra involving 52D5/2 state is employed to measure the signal electric field. An auxiliary DC field is applied to improve the sensitivity. A DC Stark map is demonstrated, where the utilized 52D5/2 exhibits mj = 1/2, 3/2, 5/2 Stark shifts and splittings. The mj = 1/2 state is employed to detect the signal field because of its larger polarizability than that of mj = 3/2, 5/2. Also, we show that the strength of the spectrum is dependent on the angle between the laser polarizations and the electric field. With optimization of the applied DC field to shift the mj = 1/2 Rydberg energy level to a high sensitivity region and the laser polarizations to obtain the maximum mj = 1/2 signal, we achieve the detection of the signal electric field with a frequency of 100 Hz down to 214.8 µV/cm with a sensitivity of 67.9 µV cm-1Hz-1/2, and the linear dynamic range is over 37 dB. Our work extends the measurement frequency of Rydberg sensors to super low frequency with high sensitivity, which has the advantages of high sensitivity and miniaturization for receiving super low frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.