Abstract
The pharmaceutical co-crystal has attracted increasing interest due to the improvement of physicochemical properties of active pharmaceutical ingredients. The characterization of pharmaceutical co-crystal is an integral part of the pharmaceutical field. In this paper, the low-frequency vibrational properties for carbamazepine co-crystals with nicotinamide and saccharin (CBZ-NIC and CBZ-SAC) have been characterized by combining the THz spectroscopy with low-wavenumber Raman spectroscopy. The experiment results show that, compared with the individual constituents, CBZ-NIC and CBZ-SAC co-crystals not only have different characteristic absorption peaks in the 0.3-2.5 THz region, but also have significant low-wavenumber Raman characteristic peaks in 0–100 cm−1. Density functional theory was performed to simulate the terahertz and low-wavenumber Raman spectra of the two co-crystals, where the calculation agreed well with the measured vibrational peak positions. The vibrational modes of CBZ-NIC and CBZ-SAC co-crystals were assigned through comparing theoretical results with the experimental spectra. Meanwhile, the low-frequency infrared and/or Raman active of characteristic peaks for such co-crystals were discussed. The results indicate the combination of THz spectroscopy and low-wavenumber Raman spectroscopy can provide more comprehensive low-frequency vibrational information for pharmaceutical co-crystals, such as collective vibration and skeleton vibration, which could play an important role in pharmaceutical science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.