Abstract

Abstract As small molecule drugs become harder to develop and less cost effective for patient use, efficient strategies for their property improvement become increasingly important for global health initiatives. As a new crystal engineering strategy, cocrystals have opened a new way to modify the physicochemical properties of pharmaceutical solids. Improvements in the physical properties of Active Pharmaceutical Ingredients (APIs) without changes in the covalent chemistry have been possible through the application of binary component solids. In this work, a pharmaceutical cocrystal of ascorbic acid (A) + para-aminobenzoic acid (B) and ascorbic acid (A) + paracetamol (P) cocrystal are synthesized and characterized by PXRD, DSC, and FT-IR. FT-IR indicates the kind of interactions occurring between API and coformer. The DSC thermogram for (A–B) cocrystal showed a single endothermic peak attributed to the melting temperature at 155 °C. The thermal behavior of the cocrystal was distinct with different melting temperatures from that seen with either of the individual components; this suggests the formation of a new phase. As molecular modeling is presented as a support to the experiment, a computational study using density functional theory (DFT) at the level of the WB97XD functional and 6-311 + G (d, p) basis set was carried out using the Gaussian 09 program. This theoretical study made it possible to calculate the energetic properties, the intramolecular hydrogen bonds as well as the thermodynamic properties for the two cocrystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.