Abstract

Abstract The origin of low-frequency variability in the midlatitude jet is investigated using a two-level baroclinic channel model. The model state fields are separated into slow and fast components using intermediate time- scale averaging. In the equation for the fast variables the nonlinear wave–wave interactions are parameterized as a stochastic excitation. The slowly varying ensemble mean eddy fluxes obtained from the resulting stochastic turbulence model are coupled with the slowly varying mean flow dynamics. This forms a coupled set of deterministic equations on the slow time scale that governs the dynamics of the eddy–mean flow interaction. The equilibria of this coupled system are found as a function of the excitation strength, which controls the level of turbulence. At low levels of turbulence the equilibrated flow with zonally symmetric mean forcing remains zonally symmetric, but as excitation increases it undergoes zonal symmetry-breaking bifurcations. Time-dependent flows arising from these bifurcations take the form of westward-propagating wavelike structures resembling blocking patterns. Features of these waves are characteristic of blocking in both observations and atmospheric general circulation model simulations including retrogression, eddy variance concentrated upstream of the waves, and eddy momentum flux forcing the waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.