Abstract

This paper studies the impact of the 45° substrate rotation on the low-frequency noise (LFN) of triple gate nFinFETs. The overall LFN has been extracted for both standard and 45° substrate rotated devices of several fin widths at different drain and gate voltage biases focusing on their operation in saturation regime. A general view of the mechanisms which govern the low-frequency noise in MOS devices is provided and a brief discussion on the physical origins of the LFN in the evaluated devices is carried out. It has been noted that the LFN in non-rotated (0° rotated) and 45° rotated devices operating in the linear regime shows 1/f behavior independent on the gate bias, whereas in the saturation regime both 1/f and Lorentzian (1/f2) noises are observed. The former one prevails at lower frequencies and the 1/f2 noise at higher ones. In this case, the corner frequency shows an exponential dependence on the gate bias.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.