Abstract

Due to bandgap tunability, GaAsSb nanowires (NWs) have received a great deal of attention for a variety of optoelectronic device applications. However, electrical and optical properties of GaAsSb are strongly affected by Sb-related defects and scattering from surface states and/or defects, which can limit the performance of GaAsSb NW devices. Thus, in order to utilize the GaAsSb NWs for high performance electronic and optoelectronic devices, it is required to study the material and interface properties (e.g. the interface trap density) in the GaAsSb NW devices. Here, we investigate the low frequency noise in single GaAsSb NWs with self-induced compositional gradients. The current noise spectral density of the GaAsSb NW device showed a typical 1/f noise behavior. The Hooge’s noise parameter and the interface trap density of the GaAsSb NW device were found to be ∼2.2 × 10−2 and ∼2 × 1012 eV−1 cm−2, respectively. By applying low frequency noise measurements, the noise equivalent power, a key figure of merit of photodetectors, was calculated. The observed low frequency noise properties can be useful as guidance for quality and reliability of GaAsSb NW based electronic devices, especially for photodetectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.