Abstract

The polarization of low-energy secondary electrons emitted from iron- and cobalt-based amorphous melt-spun ribbons is measured as a function of the applied in-plane magnetic field yielding surface hysteresis loops. The polarization is measured in real time up to a frequency of 10 kHz and hysteresis loops are displayed on an oscilloscope. The bulk losses are measured on the same samples in the same configuration with a secondary winding. The area of the loop (energy loss/cycle) is measured as a function of applied magnetic field switching rate for both the surface polarization and bulk magnetization measurements. The surface loss per cycle increases linearly with the switching rate and the bulk loss per cycle increases much more slowly with switching rate. This is the first discrimination of bulk and surface losses we are aware of.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call