Abstract

With aging, various problems in the reproductive system emerge, especially in females. However, our understanding of reproductive aging in livestock and humans is limited. We aimed to investigate reproductive changes between young and aged mice. Eight- to ten-week-old female mice were used as the young group, and 10-month-old mice were studied as the aged group. Reproductive changes were investigated from physiological, histological, cytological, and epigenetic perspectives. The estrus cycle was shortened (P <0.0001), and the estradiol (E2) concentration was lower in aged mice (P <0.01), whereas the progesterone (P4) concentration did not differ between young and aged mice (P >0.05). The histological results revealed a lower number of antral follicles in the ovary and disordered epithelial tissue structures in the oviducts in aged mice. During oogenesis, the surrounded nucleolus (SN)-type oocytes in aged mice exhibited increased mitochondrial agglutination (P <0.05) and cellular apoptosis (P <0.01) as well as decreased H3K36 triple-methylation (P <0.001). Although many defects existed, the oocytes from aged mice could normally support cellular reprogramming after somatic cell nuclear transfer. Our results indicate that the reduced levels of reproductive hormones in aged females lead to shorter estrus cycles and reduced follicular development, leading to abnormal oogenesis, particularly in SN-type immature oocytes. These results provide new insight that enhance our understanding and improve the reproductive ability of aged females.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.