Abstract

We highlight the properties of a simple model (contained in our recent work) of the quantum dynamics of a single point vortex interacting with the nodal fermionic quasiparticles of a d-wave superconductor. We describe the renormalization of the vortex motion by the quasiparticles: at T=0, the quasiparticles renormalize the vortex mass and introduce only a weak sub-ohmic damping. Ohmic (or ‘Bardeen–Stephen’ damping) appears at T>0, with the damping co-efficient vanishing ∼T2 with a universal prefactor. Conversely, quantum fluctuations of the vortex renormalize the quasiparticle spectrum. A point vortex oscillating in a harmonic pinning potential has no zero-bias peak in the electronic local density of states (LDOS), but has small satellite features at an energy determined by the pinning potential. These are proposed as the origin of sub-gap LDOS peaks observed in scanning tunneling microscopic studies of the LDOS near a vortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.