Abstract
Investigations of the complex behavior of the magnetization of manganese arsenide thin films due to defects induced by irradiation of slow heavy ions are presented. In addition to the thermal hysteresis suppression already highlighted in Trassinelli et al (2014 Appl. Phys. Lett. 104 081906), we report here on new local magnetic features recorded by a magnetic force microscope at different temperatures close to the characteristic sample phase transition. Complementary measurements of the global magnetization in different conditions (applied magnetic field and temperatures) enable the film characterization to be completed. The obtained results suggest that the ion bombardment produces regions where the local mechanical constraints are significantly different from the average, promoting the local presence of magneto-structural phases far from the equilibrium. These regions could be responsible for the thermal hysteresis suppression previously reported, irradiation-induced defects acting as seeds in the phase transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.