Abstract

We modeled the low-energy electron attachment to the sugar-phosphate-sugar (SPS) molecule for investigating the single-strand break (3' C-O and 5' C-O) at the DNA backbone. In particular, we predicted the electron capture at the phosphate center. We found that 0.6 eV electron can attach to the phosphate group, and the lifetime (∼40-55 fs) of the resulting temporary negative ion state is more than what we found for the lifetime of the metastable species (∼18-20 fs) formed at the cytosine base center. We treated the two competing dissociation channels in SPS molecule, that is, both the 3' C-O and 5' C-O lesions, separately. The activation energy barrier calculated for 5' C-O bond rupture is found to be less than that for 3' C-O bond dissociation. The overall low-energy electron transfer process is found to be mediated through a "shape resonance state" formed at the phosphate center.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call