Abstract
A low energy electron diffraction (LEED) I/V analysis was performed of the (4 x 4) oxygen structure on Ag(111). Two data sets were used, one recorded with a conventional LEED system and a second with a low energy electron microscope (LEEM). The data sets agree well with each other, demonstrating that I/V structure analyses can be performed with the same quality with LEEM as with conventional LEED. The structure obtained confirms the recently proposed model that involves a reconstruction of the Ag(111) surface. Previous models based on a thin layer of Ag(2)O that had been accepted for more than 30 years are disproved. The reconstruction model contains two units of six triangularly arranged Ag atoms and a stacking fault in one half of the unit cell. The six O atoms per unit cell occupy sites in the trenches between the Ag(6) triangles. Small lateral displacements of the Ag atoms lift the mirror symmetry of the structure, leading to two nonequivalent groups of O atoms. The atoms of both groups are located approximately 0.5 Angstrom below the top Ag layer, on fourfold positions with respect to the top layer Ag atoms. Ag-O distances between 2.05 and 2.3 Angstrom are found. The oxygen atoms exhibit large static or dynamic displacements of up to 0.3 Angstrom at 300 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.