Abstract

Low-energy electron-molecule collisions, leading to dissociative attachment through metastable anionic states, are kinetically modeled within the framework of statistical unimolecular rate theory. The reaction e(-)+SF(6)-->SF(5)(-)+F is used as an illustrative example. The modeling is applied to new measurements of branching fractions for SF(5)(-) formation in the bath gas He between 360 and 670 K at 1 and 2 Torr, and between 490 and 620 K over the range of 0.3-9 Torr. The analysis of the data follows the previous kinetic modeling of the nondissociative electron attachment, e(-)+SF(6)-->SF(6)(-), from Part I of this series. Experimental results from the present work and the literature on branching fractions and total cross sections for anion formation as functions of electron energies, bath gas temperatures and pressures, as well as observation times are analyzed. The assumption of a participation of the electronic ground state of SF(6)(-) alone suffices to model the available experimental data. A value of the dissociation energy of SF(6)(-) into SF(5)(-)+F of E(0,dis)=1.61(+/-0.05) eV is determined, which may be compared to the electron affinity of SF(6), EA=1.20(+/-0.05) eV, such as derived in Part III of this series.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call