Abstract

We investigate the quantum dynamics of site diluted S=1/2 Heisenberg antiferromagnetic clusters at the 2D percolation threshold. We use Lanczos diagonalization to calculate the lowest excitation gap Delta and, to reach larger sizes, use quantum Monte Carlo simulations to study an upper bound for Delta obtained from sum rules involving the staggered structure factor and susceptibility. Scaling the gap distribution with the cluster length L, Delta approximately L(-), we obtain a dynamic exponent z approximately 2D(f), where D(f)=91/48 is the fractal dimensionality of the percolating cluster. This is in contrast with previous expectations of z=D(f). We argue that the low-energy excitations are due to weakly coupled effective moments formed due to local imbalance in sublattice occupation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.