Abstract
A novel process which involves the replacement or supplementation of bubbles in the dissolved air flotation process with low density beads is presented. The work comprised a series of bench-scale flotation trials treating three commonly encountered algal species ( Microcystis, Melosira and Chlorella) that were removed in a flotation cell configured as either: conventional dissolved air flotation (DAF); ballasted flotation using low density 70 μm glass beads with a density of 100 kg m −3; or a hybrid process of ballasted flotation combined with conventional DAF. Results indicated that the bead only system was capable of achieving better residual turbidity than standard DAF at bead concentrations of 500 mg L −1. Addition of beads in combination with standard DAF reduced turbidity further to even lower residual turbidity levels. Algae removal was improved when glass beads were dosed, but removal was dependent on algal species. Microcystis was removed by 97% for bead only systems and this removal did not change significantly with the addition of air bubbles. Melosira was the next best removed algae with bead only dosed systems giving similar removals to that achieved by standard DAF using a 10% air recycle ratio (81 and 76% removal respectively). Chlorella was the least well removed algae by bead only systems (63% removal). However, removal was rapidly improved to 86% by the addition of air bubbles using only a 2% recycle ratio. Energy estimations suggested that at least a 50% energy reduction could be achieved using the process offering a potential route for future development of low energy separation processes for algae removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.