Abstract

High Seebeck coefficient by creating large density of state (DOS) around the Fermi level through either electronic structure modification or manipulating nanostructures, is commonly considered as a route to advanced thermoelectrics. However, large density of state due to flat bands leads to large effective mass, which results in a simultaneous decrease of mobility. In fact, the net effect of high effective mass is a lower thermoelectric figure of merit when the carriers are predominantly scattered by acoustic phonons according to the deformation potential theory of Bardeen-Shockley. We demonstrate the beneficial effect of light effective mass leading to high power factor in n-type thermoelectric PbTe, where doping and temperature can be used to tune the effective mass. This clear demonstration of the deformation potential theory to thermoelectrics shows that the guiding principle for band structure engineering should be low effective mass along the transport direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call