Abstract
Low-dose radiation therapy (LDRT) to lungs did show encouraging results in COVID-19 patients in some clinical trials. However, there has been some concern regarding the long-term risk of radiation-induced cancer (RIC). Compared to the conventional AP-PA field technique, volumetric modulated arc therapy (VMAT) can potentially reduce the dose to the marrow and other organs at risk (OARs) and thus minimize the risk of cancer. We designed a dosimetry study to study if VMAT can reduce the exposure to the marrow and other OAR doses and curtail the estimated life-time attributable risk (LAR) of cancer. We retrieved the computed tomography scan data of 10 patients (aged 40-60 years, median 48 years) who have been already treated for any malignancy in the region of the thorax. A dose of 1.0 Gy in single fraction was prescribed to both lungs. All the organs were delineated as per the established guidelines. The dosimetry achieved by the two plans was compared to find the difference. Mean OAR doses were used to estimate the LAR for both plans and compared. Planning target volume coverage parameters like conformity index and homogeneity index were significantly better with VMAT (P value < 0.05 for all). The mean dose to most OARs was significantly lower with VMAT (P value < 0.05 for all). The mean dose to the marrow was significantly lower with VMAT (59.05 vs 81.9 cGy with P value < 0.05). The overall LAR was significantly lower with VMAT as compared to the conventional plan (0.357% vs 0.398%, P value < 0.05). Compared to the conventional technique, VMAT provides better OAR dosimetry for lung irradiation (a prescription dose of 1.0 Gy or more) in COVID-19 pneumonia. VMAT significantly reduces the risk of RIC. We therefore suggest if lung LDRT is used for COVID-19 patients, VMAT is the preferred technique for a prescription dose of ≥1.0 Gy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.