Abstract

Lithium at serum concentrations up to 1 mmol/L has been used in patients suffering from bipolar disorder for decades and has recently been shown to reduce the risk for ischemic stroke in these patients. The risk for stroke and thromboembolism depend not only on cerebral but also on general endothelial function and health; the entire endothelium as an organ is therefore pathophysiologically relevant. Regardless, the knowledge about the direct impact of lithium on endothelial function remains poor. We conducted an experimental study using lithium as pharmacologic pretreatment for murine, porcine and human vascular endothelium. We predominantly investigated endothelial vasorelaxation capacities in addition to human basal and dynamic (thrombin-/PAR-1 receptor agonist-impaired) barrier functioning including myosin light chain (MLC) phosphorylation (MLC-P). Low-dose therapeutic lithium concentrations (0.4 mmol/L) significantly augment the cholinergic endothelium-dependent vasorelaxation capacities of cerebral and thoracic arteries, independently of central and autonomic nerve system influences. Similar concentrations of lithium (0.2–0.4 mmol/L) significantly stabilized the dynamic thrombin-induced and PAR-1 receptor agonist-induced permeability of human endothelium, while even the basal permeability appeared to be stabilized. The lithium-attenuated dynamic permeability was mediated by a reduced endothelial MLC-P known to be followed by a lessening of endothelial cell contraction and paracellular gap formation. The well-known lithium-associated inhibition of inositol monophosphatase/glycogen synthase kinase-3-β signaling-pathways involving intracellular calcium concentrations in neurons seems to similarly occur in endothelial cells, too, but with different down-stream effects such as MLC-P reduction. This is the first study discovering low-dose lithium as a drug directly stabilizing human endothelium and ubiquitously augmenting cholinergic endothelium-mediated vasorelaxation. Our findings have translational and potentially clinical impact on cardiovascular and cerebrovascular disease associated with inflammation explaining why lithium can reduce, e.g., the risk for stroke. However, further clinical studies are warranted.

Highlights

  • The mood stabilizer lithium has been successfully used in patients suffering from bipolar disorder for decades

  • The treatment of vessels with 0.4 mmol/L lithium chloride did not significantly alter the endothelium-independent relaxation capacity compared to controls at any sodium nitroprusside (SNP) concentration tested

  • Since thrombin plays a relevant pathophysiologic role for the endothelial barrier failure or impairment (Coughlin, 2000), e.g., during and after cerebral ischemia and hemorrhages (Stokum et al, 2016), we investigated the impact of lithium treatment on the thrombin-induced hyper-permeability of human endothelium

Read more

Summary

Introduction

The mood stabilizer lithium has been successfully used in patients suffering from bipolar disorder for decades. Recent studies have identified protective effects of lithium in cardiovascular and cerebrovascular diseases (Gold et al, 2011; Chiu and Chuang, 2012). This protective effect was highlighted by two recent clinical studies demonstrating that prolonged lithium treatment reduces the risk of ischemic stroke in bipolar disorder patients (Lan et al, 2015), and improves neurological recovery after cortical stroke (Mohammadianinejad et al, 2014). Lithium treatment (Rajkowska, 2000; Lan et al, 2015) may be effective in both ischemic and hemorrhagic stroke, and even traumatic brain injury (Leeds et al, 2014; Gao et al, 2016) by improving disturbances in endothelial functions, such as: vascular or cerebrovascular autoregulation of blood flow, vasorelaxation capacity, and dynamic endothelial barrier permeability (Bosche et al, 2003, 2009, 2010; Gündüz et al, 2003; Butcher et al, 2004; Dohmen et al, 2007; Meisel et al, 2012; Renú et al, 2015; Helbok et al, 2016)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call