Abstract

Esketamine is verified as a potential therapeutic drug for the treatment of depression, but it is still unclear the detailed underlying mechanisms by which Esketamine ameliorates depression-related symptoms, which seriously limits the utilization of this drug in clinical practices. In this study, the C57BL6/J mice and mouse primary microglial cells were subjected to lipopolysaccharide (LPS)-induced depressive models in vivo and in vitro, and our results confirmed that LPS-induced neuroinflammation, pyroptotic and apoptotic death contributed to the development of LPS-induced depressive symptoms. Then, the following experiments verified that low-dose Esketamine treatment decreased the expression levels of IL-6, TNF-α and IL-18 to restrain cellular inflammation, downregulated NLRP3, cleaved Caspase-1, IL-1β and GSDMD-N to hamper pyroptotic cell death, and inhibited cleaved caspase-3 and Bax, but upregulated Bcl-2 to restrict apoptotic cell death in the LPS-treated mice hippocampus tissues and mouse microglial cells, leading to the suppression of depression development. However, high-dose Esketamine did not have those effects. Next, by conducting mechanical experiments, we verified that low-dose Esketamine downregulated GSK-3β to inactivate NLRP3 inflammasome, and the effects of low-dose Esketamine on cell pyroptosis, neuroinflammation and apoptosis in the LPS-treated microglial cells were all abrogated by overexpressing GSK-3β and NLRP3. Taken together, low-dose Esketamine ameliorated LPS-induced depressive symptoms in mice through regulating the GSK-3β/NLRP3 pathway, and our work suggested that appropriate doses of Esketamine were essential for the treatment of depression in clinic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call