Abstract

To measure and reduce the patient dose during computed tomography (CT) for dental applications. Lithium fluoride thermoluminescent dosimeters were implanted in a tissue-equivalent humanoid phantom (Alderson-Rando-Phantom) to determine doses to the thyroid gland, the active bone marrow, the salivary glands, and the eye lens. Dental CT was performed with spiral CT and a dental software package. The usual dental CT technique was compared with a new dose-reduced protocol, which delivered best image quality at lowest possible radiation dose, as tested in a preceding study. Image quality was analysed using a human anatomic head preparation. In addition, the radiation dose was compared with panoramic radiography and digital volume tomography (DVT). Eight radiologists evaluated all images in a blinded fashion. A Wilcoxon rank pair test was used for statistical evaluation. Radiation dose could be reduced by a factor of 9 (max.) with the new dose-reduced protocol (e.g. bone marrow dose from 23.6 mSv to 2.9 mSv; eye lens from 0.5 mSv to 0.3 mSv; thyroid gland from 2.5 mSv to 0.5 mSv; parotid glands from 2.3 mSv to 0.4 mSv). Dose reduction did not reduce image quality or diagnostic information. A considerable dose reduction without loss of diagnostic information is achievable in dental CT. As radiation exposure of the presented low-dose protocol is expected to be in the same range as DVT, low-dose dental CT might be superior to DVT, because CT can be used to evaluate soft tissues as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call