Abstract
The intention of this study was to reduce patient dose during dental CT in the planning for osseointegrated implants. Dental CTs were performed with a spiral CT (Somatom Plus 4, Siemens) and a dental software package. Use of the usual dental CT technique [1] (120 kVp; 165 mA, 1 s rotation time, 165 mAs; pitch factor 1) was compared with a new protocol (120 kVp; 50 mA; 0.7 s rotation time; 35 mAs; pitch factor 2) which delivered the best image quality at the lowest possible radiation dose, as tested in a preceding study. Image quality was analysed using a human anatomic head preparation. Four radiologists analysed the images independently. A Wilcoxon rank pair-test was used for statistic evaluation. The doses to the thyroid gland, the active bone marrow, the salivary glands, and the eye lens were determined in a tissue-equivalent phantom (Alderson-Rando Phantom) with lithium fluoride thermoluminescent dosimeters at the appropriate locations. By mAs reduction from 165 to 35 and using a pitch factor of 2, the radiation dose could be reduced by a factor of nine (max.) (e.g., the bone marrow dose could be reduced from 23.6 mSv to 2.9 mSv, eye lens from 0.5 mSv to 0.3 mSv, thyroid gland from 2.5 mSv to 0.5 mSv, parotid glands from 2.3 mSv to 0.4 mSv). The dose reduction did not lead to an actual loss of image quality or diagnostic information. A considerable dose reduction without loss of diagnostic information is achievable in dental CT. Dose-reducing examination protocols like the one presented may further expand the use of preoperative dental CT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.