Abstract

Influence of initial density of tin (Sn) targets has been quantitatively investigated for efficient extreme ultraviolet light emission from laser-produced plasmas. With a decrease in the initial density, conversion efficiency (CE) from incident laser energy to output 13.5nm light energy in a 2% bandwidth increases; 2.2% of the peak CE was attained with use of 7% low-density SnO2 targets (0.49g∕cm3) irradiated with a Nd:YAG laser, of which wavelength, pulse duration, and intensity are, respectively, 1.064μm, 10ns, and 5×1010W∕cm2. The peak CE is 1.7 times higher than that obtained with the use of solid density Sn targets. Experimental results may be attributed to the influence of the initial density and/or microstructure of the targets on expansion dynamics of the plasmas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.