Abstract

Low cycle fatigue performance of ball grid array (BGA) structure Cu/Sn–3.0Ag–0.5Cu/Cu joints with different standoff heights (h, varying from 100 to 500μm) and two pad diameters (d, d=320 and 480μm) under displacement-controlled cyclic loading was studied by experimental method and finite element (FE) simulation. A prediction method based on the plastic strain energy density and continuum damage mechanics (CDM) framework was proposed to evaluate the initiation and propagation of fatigue crack in solder joints. The results show that fatigue failure of solder joints is a process of damage accumulation and the plastic strain energy density performs a power function correlation with the cycle numbers of crack initiation and propagation. Crack propagation rate is affected by the stress triaxiality, which is dependent on the loading mode and increases dramatically with decreasing h under tensile loading, while the change of standoff height has very limited influence on the stress triaxiality under shear loading mode. Moreover, crack growth correlation constants identified in Cu/Sn–3.0Ag–0.5Cu/Cu joints with a specific geometry (h=100μm and d=480μm) can be well used to predict the fatigue life of BGA joints with other geometries. Furthermore, the results have also shown that the fatigue life of solder joints increases with decreasing the geometric ratio of h/d under the same nominal shear strain amplitude, while it drops with decreasing h/d under the same shear displacement amplitude in cyclic loading. When the geometric ratio (i.e., h/d ratio) is unchanged, the miniaturization of BGA joints brings about a decrease in fatigue life of the joints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call