Abstract

Carbon quantum dots (CQD) are an advanced fluorescent material, which has attracted more and more attention in theoretical research and practical applications. To obtain stable CQDs with high fluorescence characteristics for detecting trace metal ions in water, nitrogen-doped carbon quantum dots (N-CQDs) based fluorescent sensors were synthesized by the hydrothermal method, using citric acid and urea as source. Transmission electron microscopy (TEM) images showed that the synthesized N-CQDs maintained a narrow particle size distribution bellow 10nm, and its average size was 3.07nm. Fourier transform infrared spectroscopy (FT-IR) indicated that abundant hydroxyl and carboxyl functional groups existed on N-CQDs surface, which helped N-CQDs highly disperse in water. In addition, UV-vis spectroscopy and photoluminescence demonstrated that the N-CQDs obtained a 10.27% of quantum yield (QY) with relatively high and stable fluorescence performance. As a fluorescent sensor, the N-CQDs showed a fluorescence "ON-OFF" mechanism during the Cu2+ detection, which was induced from the electrons transition in surface functional groups. The final N-CQDs exhibited a wide linear relationship between fluorescence response and concentration of Cu2+ in range of 0.3-0.7μM with a detection limit of 0.071μM. Furthermore, the detection of Cu2+ in the simulating surface water (by adding interfering metal ions in purified water) and the tap water (from municipal water in Beijing) were used to verify N-CQDs practical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call