Abstract

Mobility in urban and interurban areas, mainly by cars, is a day-to-day activity of many people. However, some of its main drawbacks are traffic jams and accidents. Newly made vehicles have pre-installed driving evaluation systems, which can prevent accidents. However, most cars on our roads do not have driver assessment systems. In this paper, we propose an approach for recognising driving styles and enabling drivers to reach safer and more efficient driving. The system consists of two physical sensors connected to a device node with a display and a speaker. An artificial neural network (ANN) is included in the node, which analyses the data from the sensors, and then recognises the driving style. When an abnormal driving pattern is detected, the speaker will play a warning message. The prototype was assembled and tested using an interurban road, in particular on a conventional road with three driving styles. The gathered data were used to train and validate the ANN. Results, in terms of accuracy, indicate that better accuracy is obtained when the velocity, position (latitude and longitude), time, and turning speed for the 3-axis are used, offering an average accuracy of 83%. If the classification is performed considering just two driving styles, normal and aggressive, then the accuracy reaches 92%. When the geo-information and time data are included, the main novelty of this paper, the classification accuracy is improved by 13%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.