Abstract

ABSTRACTStatistical methods such as Poisson distribution, negative binomial regression (NB), and zero inflated negative binomial regression (ZINB) have generally been used in road safety studies to establish the complex relationships between variables. Over the last few years, the artificial neural networks (ANN) model has also been used. The ANN model does not have any prior limitations such as the equality condition of mean and variance observed in Poisson regression. However, though the ANN model has been used in the analysis of different accident types, to the best of our knowledge, no study has used the ANN model for establishing this relationship with truck accident data on divided multilane interurban roads. In this study, the road sections D750/07–D750/15 in Ankara–Aksaray–Eregli, Turkey, were considered and truck accident data from 2008 to 2011 were analyzed using NB and ANN. The analysis show that the ANN model has lower errors and higher R2 values than NB and performs slightly better than NB for predicting the number of trucks involved in accidents. Based on a comparison of performances the study concludes, that ANN could be used as an alternative model for analyzing truck accident data on divided multilane interurban roads in Turkey.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.