Abstract

The nocturnality hypothesis of K. Autumn and coworkers states that nocturnal geckos have evolved a low energetic cost of locomotion (C(min)). A low C(min) increases maximum aerobic speed and partially offsets the decrease in maximum oxygen consumption caused by activity at low nocturnal temperatures. We tested whether a low C(min) is unique to nocturnal geckos or represents a more general pattern of convergent evolution among lizards that enables nocturnality and/or cold-temperature activity. We measured C(min) in four carefully selected lizard species from New Zealand (two nocturnal and two diurnal; n=5-9 individuals per species), including a nocturnal and diurnal gecko (a low C(min) is a gecko trait and is not related to nocturnality), a nocturnal skink (a low C(min) is related to being nocturnal), and a diurnal skink active at low temperatures (a low C(min) is related to being active at low body temperatures). The C(min) values of the four species measured in this study (range=0.21-2.00 mL O(2) g(-1) km(-1)) are lower than those of diurnal lizards from elsewhere, and the values are within or below the 95% confidence limits previously published for nocturnal geckos. A low C(min) increases the range of locomotor speeds possible at low temperatures and provides an advantage for lizards active at these temperatures. We accepted the hypothesis that nocturnal lizards in general have a low C(min) and provide evidence for a low C(min) in lizards from cool-temperate environments. The low C(min) in lizards living at high latitudes may enable extension of their latitudinal range into otherwise thermally suboptimal habitats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call