Abstract

The automation industry faces the challenge of avoiding interference with obstacles, estimating the next move of a robot, and optimizing its path in various environments. Although researchers have predicted the next move of a robot in linear and non-linear environments, there is a lack of precise estimation of sectorial error probability while moving a robot on a curvy path. Additionally, existing approaches use visual sensors, incur high costs for robot design, and ineffective in achieving motion stability on various surfaces. To address these issues, the authors in this manuscript propose a low-cost and multisensory robot capable of moving on an optimized path in diverse environments with eight degrees of freedom. The authors use the extended Kalman filter and unscented Kalman filter for localization and position estimation of the robot. They also compare the sectorial path prediction error at different angles from 0° to 180° and demonstrate the mathematical modeling of various operations involved in navigating the robot. The minimum deviation of 1.125 cm between the actual and predicted path proves the effectiveness of the robot in a real-life environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.