Abstract
Background3-dimensional (3D) printing carries a genuine potential for pre-operative planning in neurosurgery. Entry-level 3D printers offer practicality in low resource settings, but are often limited by the range of filament materials as well as the capability of open-source segmentation software. ObjectiveWe intended to demonstrate that 3D printing of neuroanatomical structures is possible using an entry-level 3D printer equipped with the direct drive (DD) modification, which supported flexible filaments, with the models segmented using an open-source software. MethodsA DD system was installed onto the Ender 3 Pro printer. An attempt to print neurosurgical models using a low-cost 3D printer was conducted, where four patient-based neuroanatomical models were printed: skull base-vasculature, skull base-tumour, cervical spine, and ventricular system. The results were discussed and compared to similar endeavours in past literature. ResultsAlthough DD installation was challenging and led to vibration and longer print time, which ultimately warranted an inferior printing speed, DD system enabled the printing with thermoplastic polyurethane (TPU), a versatile elastomer; in addition to producing equal amount of detail to those printed with high-end printers and advanced image segmentation software. Fitting the frame well, changing infill type, and avoiding warping and stringing will improve print quality with the DD system. Conclusion3D printing with entry-level 3D printers equipped with DD system has been proven to be a reliable way of accurately reproducing patient-specific neuroanatomical constructs. Follow-up studies are necessary to implement 3D printing for neurosurgical planning in low-resource settings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have