Abstract

Because of their excellent antibacterial properties, silver nanoparticles (AgNPs) are widely used in all walks of life, which has caused them to be discharged into aquatic environments with possible negative effects on aquatic plants. In the present study, we used an aquatic fern, Ceratopteris thalictroides, as a model to investigate the effects of AgNPs on its spore germination, gametophytes, sex differentiation, and growth. The results demonstrated that AgNPs significantly inhibited spore germination of C. thalictroides at a AgNP concentration higher than 0.02 mg/L. Additionally, we found sex-dependent effects of AgNPs on the development and growth of the gametophyte of C. thalictroides. The proportion of hermaphrodites in the gametophytes and the area of gametophytes significantly decreased under AgNP treatment, while no significant effect was observed in the male gametophytes. Using the AgNP filtrate (without nanoparticles) and AgNPs plus cysteine (Ag+ chelator), we found that the release of Ag+ from nanoparticles was not the cause of the toxicity of AgNPs on C. thalictroides. The EC50 of AgNPs on spore germination was 0.0492 mg/L, thus indicating an ecological risk of AgNPs on this species even at concentrations lower than the Ag element concentration of the WHO guidelines for drinking-water quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call