Abstract

Consumption of high fluoride (F-) and nitrate (NO3-) containing water may pose serious health hazards. One hundred sixty-one groundwater samples were collected from drinking wells in Khushab district, Punjab Province, Pakistan, to determine the causes of elevated F- and NO3- concentrations, and to estimate the human health risks posed by groundwater contamination. The results showed pH of the groundwater samples ranged from slightly neutral to alkaline, and Na+ and HCO3- ions dominated the groundwater. Piper diagram and bivariate plots indicated that the key factors regulating groundwater hydrochemistry were weathering of silicates, dissolution of evaporates, evaporation, cation exchange, and anthropogenic activities. The F- content of groundwater ranged from 0.06 to 7.9mg/L, and 25.46% of groundwater samples contained high-level fluoride concentration (F- > 1.5mg/L), which exceeds the (WHO Guidelines for drinking-water quality: incorporating the first and second addenda, WHO, Geneva, 2022) guidelines of drinking-water quality. Inverse geochemical modeling indicates that weathering and dissolution of fluoride-rich minerals were the primary causes of F- in groundwater. High F- can be attributed to low concentration of calcium-containing minerals along the flow path. The concentrations of NO3- in groundwater varied from 0.1 to 70mg/L; some samples are slightly exceeding the (WHO Guidelines for drinking-water quality: incorporating the first and second addenda, WHO, Geneva, 2022) guidelines for drinking-water quality. Elevated NO3- content was attributed to the anthropogenic activities revealed by PCA analysis. The high levels of nitrates found in the study region are a result of various human-caused factors, including leaks from septic systems, the use of nitrogen-rich fertilizers, and waste from households, farming operations, and livestock. The hazard quotient (HQ) and total hazard index (THI) of F- and NO3- showed high non-carcinogenic risk (> 1) via groundwater consumption, demonstrating a high potential risk to the local population. This study is significant because it is the most comprehensive examination of water quality, groundwater hydrogeochemistry, and health risk assessment in the Khushab district to date, and it will serve as a baseline for future studies. Some sustainable measures are urgent to reduce the F- and NO3- content in the groundwater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.