Abstract

This study describes a key element of any modern wireless sensor system: data processing. The authors describe a system consisting of a wireless sensor network and an algorithmic software for condition-based monitoring of electrical plant in a live substation. Specifically, the aim is to monitor for the presence of partial discharge (PD) using a matrix of inexpensive radio sensors with limited processing capability. A low-complexity fingerprinting technique is proposed, given that the sensor nodes to be deployed will be highly constrained in terms of processing power, memory and battery life. Two variants of artificial neural network (ANN) learning models (multilayer perceptron and generalised regression neural network) that use regression as a form of function approximation are developed and their performance compared to K-nearest neighbour and weighted K-nearest neighbour models. The results indicate that the ANN models yield superior performance in terms of robustness against noise and may be particularly suited for PD localisation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.