Abstract
Information about ocean wave is very important for naval navigation, port operations, offshore or nearshore activities around the sea waters. Moreover prediction of wave condition is necessary for design of harbour, coastal and offshore structures. Variations in wave heights are caused by wind pressure on free waves which make it random and uncertain, so that become difficult to predict. In previous studies, wave prediction have been carried out by using semi-empirical methods and conventional methods that require high resolution simulations and high computation. In this paper, we propose a method for prediction wave height from wind data by using a variant of Artificial Neural Network (ANN) with single pass associative memory-forward, so called General Regression Neural Network (GRNN). To obtain a set of training data, we perform numerical wave simulation by using SWAN (Simulating Wave Nearshore) model by using wind data obtained from ECMWF ERA-5. As a study area, we choose a rather shallow bathymetry and complex geometry, in Jakarta Bay, Indonesia. Results of prediction by using GRNN show a good agreement with wave data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.