Abstract
This work is devoted to solving the control problem of hydraulic excavator systems under full-state constraints. The standout aspect of the proposed control approach lies in the fact that not only full-state constraints can be accommodated, but also the settling time and tracking precision can be explicitly specified in advance, irrespective of the arbitrary initial poses of the hydraulic excavator. Additionally, a novel nonlinear state-dependent function is introduced, enabling the system to handle a larger range of initial conditions. The proposed controller, which solely relies on the state variables after nonlinear transformation, has lower complexity in both structure and expression. The effectiveness of the proposed approach is demonstrated through simulations and experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.