Abstract

Many important engineering applications involve control design for Euler-Lagrange (EL) systems. In this article, the practical prescribed time tracking control problem of EL systems is investigated under partial or full state constraints. A settling time regulator is introduced to construct a novel performance function, with which a new neural adaptive control scheme is developed to achieve pregiven tracking precision within the prescribed time. With the specific system transformation techniques, the problem of state constraints is transformed into the boundedness of new variables. The salient feature of the proposed control methods lies in the fact that not only the settling time and tracking precision are at the user's disposal but also both partial state and full state constraints can be accommodated concurrently without the need for changing the control structure. The effectiveness of this approach is further verified by the simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.