Abstract

This paper proposes a method for tracking the maximum power point (MPP) of a photovoltaic (PV) module that exploits the relation existing between the values of module voltage and current at the MPP (MPP locus). Experimental evidence shows that this relation tends to be linear in conditions of high solar irradiation. The analysis of the PV module electrical model allows one to justify this result and to derive a linear approximation of the MPP locus. Based on that, an MPP tracking strategy is devised which presents high effectiveness, low complexity, and the inherent possibility to compensate for temperature variations by periodically sensing the module open circuit voltage. The proposed method is particularly suitable for low-cost PV systems and has been successfully tested in a solar-powered 55-W battery charger circuit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.