Abstract
In this paper, two types of Low Clock-Swing True Single Phase Clock (TSPC) Flip-Flops suitable for low-power applications are proposed. One is Low Clock-Swing Edge-Triggered TSPC Flip-Flop (LCSETTFF), constructed with a negative TSPC split out latch and a positive TSPC split out latch. The other is Low Clock-Swing Pulse-Triggered TSPC Flip-Flop (LCSPTTFF), developed in several styles. A double-edge triggered pulse generator is also developed for LCSPTTFF. With low threshold voltage clock transistors adopted, great power efficiency can be obtained in the clock network. Both types of Flip-Flops have advantages of simple structure, low power and much lower clock network power dissipation. All proposed circuits are simulated in HSPICE with 0.18 μm CMOS technology. Simulation results show that the power of LCSETTFF can be reduced by 42%, while the power dissipation, Power-Delay Product (PDP) and Area-Power-Delay Product (APDP) of LCSPTTFF can be reduced by 45–60%, 11–27% and 58–65%, respectively. In addition, the power consumptions of clock network of LCSPTTFF and LCSETTFF are estimated to be reduced by 78% and 56%, respectively, compared with conventional Flip-Flops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.