Abstract

With the intensification of energy crisis and the aggravation of greenhouse effect, It is particularly essential to develop a sustainable energy system. For this reason, a low-carbon economic dispatch model for a park integrated energy system considering integrated demand response and ladder-type carbon trading is designed. First, a refined model of hydrogen utilization is developed, and hydrogen-enriched natural gas as hybrid energy to extend the scenario of hydrogen utilization. Second, in order to investigate the effect of demand response mechanism and carbon trading mechanism on the system, an integrated demand response model for electricity-heat-gas load and a ladder-type carbon trading model that takes into account the carbon emissions of the whole process are constructed respectively. Finally, based on above models, a low-carbon economic scheduling model is established to optimize the total cost of the system. The simulation results show that the refined modeling and hydrogen-doped operation of the equipment can help reduce the system's carbon emissions. When the integrated demand response mechanism and the ladder-type carbon trading mechanism are considered together, the carbon emissions of the system are greatly reduced, while its total cost can be kept low.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call