Abstract
The main objective of this study is to better understand the effects of diet-induced weight loss on brain connectivity in response to changes in glucose levels in individuals with obesity. A total of 25 individuals with obesity, among whom 9 had a diagnosis of type 2 diabetes, underwent functional magnetic resonance imaging (fMRI) scans before and after an 8-week low-calorie diet. We used a two-step hypereuglycemia clamp approach to mimic the changes in glucose levels observed in the postprandial period in combination with task-mediated fMRI intrinsic connectivity distribution (ICD) analysis. After the diet, participants lost an average of 3.3% body weight. Diet-induced weight loss led to a decrease in leptin levels, an increase in hunger and food intake, and greater brain connectivity in the parahippocampus, right hippocampus, and temporal cortex (limbic-temporal network). Group differences (with vs. without type 2 diabetes) were noted in several brain networks. Connectivity in the limbic-temporal and frontal-parietal brain clusters inversely correlated with hunger. A short-term low-calorie diet led to a multifaceted body response in patients with obesity, with an increase in connectivity in the limbic-temporal network (emotion and memory) and hormone and eating behavior changes that may be important for recovering the weight lost.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have