Abstract

A novel hollow-core anti-resonant fiber (HC-ARF) with glass-sheet conjoined nested tubes that supports five core modes of LP01-LP31 with low mode couplings, large differential group delays (DGDs), and low bending losses (BLs) is proposed. A novel cladding structure with glass-sheet conjoined nested tubes (CNT) is induced for the proposed HC-ARF which can suppress mode couplings between the LP01-LP31 modes and the cladding modes. The higher-order modes (HOMs) which are LP11-LP31 modes also have very low loss by optimizing the radius of the nested tube and the core radius. Moreover, the large effective refractive index differences Δneff between HOMs are all larger than 1 × 10-4 which contributes to a large DGD in the wavelength range from 1.3 to 1.7 µm. The bending loss of the HC-ARF is analyzed and optimized emphatically. Our calculation results show that bending losses of LP01-LP31 modes are all lower than 3.0 × 10-4 dB/m in the wavelength range from 1.4 to 1.61 µm even when the fiber bending radius of the HC-ARF is 6 cm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call