Abstract
Triple negative breast cancers (TNBC) present a poor prognosis primarily due to their resistance to chemotherapy. This resistance is known to be associated with elevated expression of certain anti-apoptotic members within the proteins of the BCL-2 family (namely BCL-xL, MCL-1 and BCL-2). These regulate cell death by inhibiting pro-apoptotic protein activation through binding and sequestration and they can be selectively antagonized by BH3 mimetics. Yet the individual influences of BCL-xL, MCL-1, and BCL-2 on the sensitivity of TNBC cells to chemotherapy, and their regulation by cancer-associated fibroblasts (CAFs), major components of the tumor stroma and key contributors to therapy resistance remain to be delineated. Using gene editing or BH3 mimetics to inhibit anti-apoptotic BCL-2 family proteins in TNBC line MDA-MB-231, we show that BCL-xL and MCL-1 promote cancer cell survival through compensatory mechanisms. This cell line shows limited sensitivity to chemotherapy, in line with the clinical resistance observed in TNBC patients. We elucidate that BCL-xL plays a pivotal role in therapy response, as its depletion or pharmacological inhibition heightened chemotherapy effectiveness. Moreover, BCL-xL expression is associated with chemotherapy resistance in patient-derived tumoroids where its pharmacological inhibition enhances ex vivo response to chemotherapy. In a co-culture model of cancer cells and CAFs, we observe that even in a context where BCL-xL reduced expression renders cancer cells more susceptible to chemotherapy, those in contact with CAFs display reduced sensitivity to chemotherapy. Thus CAFs exert a profound pro-survival effect in breast cancer cells, even in a setting highly favoring cell death through combined chemotherapy and absence of the main actor of chemoresistance, BCL-xL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.