Abstract

High-resolution display environments built on networked, multi-tile displays have emerged as an enabling tool for collaborative, distributed visualization work. They provide a means to present, compare, and correlate data in a broad range of formats and coming from a multitude of different sources. Visualization of these distributed data resources may be achieved from a variety of clustered processing and display resources for local rendering and may be streamed on demand and in real-time from remotely rendered content. The latter is particularly important when multiple users want to concurrently share content from their personal devices to further augment the shared workspace. This paper presents a high-quality video streaming technique allowing remotely generated content to be acquired and streamed to multi-tile display environments from a range of sources and over a heterogeneous wide area network.The presented technique uses video compression to reduce the entropy and therefore required bandwidth of the video stream. Compressed video delivery poses a series of challenges for display on tiled video walls which are addressed in this paper. These include delivery to the display wall from a variety of devices and localities with synchronized playback, seamless mobility as users move and resize the video streams across the tiled display wall, and low latency video encoding, decoding, and display necessary for interactive applications. The presented technique is able to deliver 1080p resolution, multimedia rich content with bandwidth requirements below 10 Mbps and low enough latency for constant interactivity. A case study is provided, comparing uncompressed and compressed streaming techniques, with performance evaluations for bandwidth use, total latency, maximum frame rate, and visual quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call